
Artificial Intelligence and
Collusion:
An Experiment

G. Calzolari, E. Calvano, V. Denicolò and S. Pastorello
EUI, University of Bologna and CEPR
EAGCP meeting, December 4th 2018

Algorithmic pricing

• Algorithmic pricing is here to stay
• Two vintages of software:

1. estimate demand and form beliefs about competitors following the
instructions of the programmer and then maximize profits
• Can collude only to the extent they are designed or instructed to do so

2. based on Artificial Intelligence, learn everything from scratch (machine
learning)
• All they need to be told is what variables to condition prices on (e.g., competitors’ past

prices)

Algorithmic pricing and collusion

• Is there hard evidence of algorithmic collusion?
• Not yet (or very little)

• Are there reasons to be concerned?
• Yes

Findings

• We follow an experimental approach
• We perform a number of computer simulations with machine

learning algorithms that interact repeatedly over time in controlled
economic environments

• We find that relatively simple pricing algorithms systematically learn
to play sophisticated collusive strategies

• Such strategies involve punishments that are proportional to the extent of the
deviations and have a finite duration, with a gradual return to the pre-
deviation prices

Tacit collusion

• The algorithms leave no trace of explicit collusion
• The algorithms learn to play collusive strategies by trial and error, with no

prior knowledge of the environment in which they operate
• They have not been designed or instructed to collude
• They do not communicate with each other

Findings

• We are the first to clearly document collusion among pricing
algorithms

• Previous literature (in both computer science and economics) has
sometimes found supra-competitive prices

• But high prices might be the result of the algorithms' failing to learn
the static Nash equilibrium

• If this is so, there would be little reason to be concerned as the problem
would presumably fade away as the machine learning technology improves

• If instead the algorithms learn to collude, then the problem might worsen
with the diffusion of smarter programs

Findings

• Algorithms may in fact be better at colluding than humans
• The experimental literature has found that human subjects exhibit a limited

ability to coordinate in the absence of explicit communication
• In the lab

• two agents who cannot communicate with each other sometimes manage to converge to
slightly supra-competitive prices

• three agents typically set prices that are close to the static Nash equilibrium
• four agents or more tend in fact to be more aggressive than Nash

• This "rivalry" effect which is often attributed to the tendency of experimental subjects to behave as if
they were involved in a contest

• With pricing algorithms, substantial collusion remains even with three or four
active firms

• even though the level of collusion does decrease with the number of competitors, as theory
predicts

Tacit collusion

• In most countries today tacit collusion is not regarded as illegal
• The rationale for this policy is twofold

• On the one hand, tacit collusion is viewed as illusory and very hard to achieve
• Tolerant policy entails only few false negatives

• On the other hand, tacit collusion is hard to detect
• Aggressive policy implies many false positives

• The advent of algorithmic pricing may change the balance between
type I and type II errors

Q-learning

• We focus on a class of Reinforcement Learning models known as Q-
learning

• Several reasons for this, Q-learning is
• Natural
• Model free
• Popular
• Guaranteed to work is well behaved single decision making problems
• Successful

• Outperforms humans in complex games such as Go

Q-learning

• Q-Learning is designed to tackle Markov Decision Processes
• In each period an agent observes a state variable ௧ and

then chooses an action ௧

• The agent obtains a reward ௧ ௧ and the system moves to the
next state ௧ାଵ ௧ ௧

• The objective is to maximize the present value of the reward stream

௧
௧ ௧

ஶ
௧ୀ଴

• Here represents the discount factor

Q-learning

• The algorithm tries to find the optimal policy without knowing the
underlying model and

• It does so by iteratively estimating the Q-function

• This is related to the value function by

• With finite action and state spaces, the Q-function is a
matrix

Q-learning

• Q-learning algorithms estimate the Q-matrix by starting from a clean slate and
updating the matrix as follows:

• For ௧ ௧

௧ାଵ ௧
௔

௧
ᇱ

• For ௧ ௧

௧ାଵ ௧

• The variable is the learning rate

Exploration

• To learn the optimal policy, the algorithm must explorate
• With ε-greedy exploration, the algorithm chooses the action currently

perceived as optimal with probability and randomizes uniformly
across all possible actions with probability

• If is initially low but eventually goes to 1, then under mild
technical conditions the algorithm converges to the optimal policy

Q-learning in repeated games

• Q-learning algorithms may be also applied to infinitely repeated games
• To have a finite and time-invariant state space, one must assume bounded

recall
• The algorithms have a finite memory , so they remember rivals’ actions in the last

repetitions of the game
• Still, the environment faced by each agent is no longer stationary since the

competing algorithms may change their behavior as they are
experimenting and learning

• For this reason, there are no general convergence results for Q-learning
algorithms in repeated games

• We do not know whether the algorithms converge at all
• If they do, we do not know whether they converge to an optimal strategy – hence a

Nash equilibrium

State of the art

• The Q-learning algorithms we use are not state-of-the-art in machine
learning

• We use the independent learning approach in which the algorithms
do not realize they are playing a game

• Extensive research on joint learning but no consensus yet
• Q-learning works for finite action and state spaces and becomes

slower and slower as these spaces get bigger
• Deep learning can deal with the continuous case
• It has long suffered from problems of convergence

• Recently, however, progress has been made
• This allowed machine learning software to reach superhuman performances in playing

Atari videogames or board games such as Go

Economic model

• An infinitely repeated Bertrand oligopoly game
• firms, Logit demand and constant marginal costs

೔ ೔

ೕ ೕ బ

• As a robustness check, we have also considered the case of linear
demand derived from Singh&Vives preferences

Exploration and initialization

• We use the ε-greedy model with a time declining exploration rate

• The initial matrix has been set in accordance to the fact that initially
all agents randomize uniformly across all possible actions

• Robustness checks:
• Clean slate
• Bertrand-Nash
• Monopoly

Discretization and memory

• To get finite action and state spaces, we have discretized the model
• Prices can take equally spaced values in the interval from

below Bertrand to above monopoly
• In the baseline experiment, and
• In the baseline experiment, one-period memory
• So we have 15 actions and 225 states; the Q-matrix has 3375 entries

Exploration and learning

• We have let range in the entire unit interval
• As for , we have focused on the interval
• The upper bound of the interval implies that cells of the Q-matrix that

correspond to prices that are systematically regarded as sub-optimal
by the algorithms may be visited no more than 3-4 times

• With even less exploration, learning would be difficult and outcomes might
depend on the way the matrix is initialized

Profit gain

• We often use an index of competitiveness which is comparable across
different experiments, i.e. the average profit gain

• A competitive outcome corresponds to , a perfectly collusive
one to 1

• A similar index may also be defined for each individual firm

Baseline experiment

•

•

•

•

•

• ௜

• ଴

• ௜

•
ଵ

ଶ

Convergence

• We presume that convergence is achieved if, for 25,000 repetitions in
a row, for both algorithms, and for all states, the optimal action (i.e.,
the one with the highest Q-value) does not change

• For each experiment, we run 1,000 sessions which continue until
convergence (but in any case for no more than one billion repetitions)

• While there is no theoretical guarantee that the algorithms converge,
in more than 99.9% of our sessions they do

• Convergence may be slow. For example, with and
(the mid-points of our grid) convergence takes on

average 500,000 periods

Time to convergence

• In fact, convergence is slow if the algorithms learn on-line
• But it is fast if they learn off-line (less than one minute of CPU time)
• Our approach is to give the algorithms all the time is needed to

complete they learning
• Q-learning algorithms learn mechanically but stubbornly
• Newer algorithms are smarter

• Deep learning algorithms can be much faster

Consistency

• Even if learning requires considerable experimentation which creates a lot
of noise, eventually algorithms do not make casual choices

• Long-run outcomes are quite stable across sessions
• ∆

• In symmetric duopoly, ଵ ଶ never statistically significant

• This stability of behavior does not depend on the fact that we average
across the last 25,000 repetitions

• Upon convergence prices are quite stable
• In more than 40% of the sessions, both algorithms keep charging the same price
• The remaining sessions are characterized by price cycles. Of these cycles, however,

more than three quarters have a period of two, and all involve adjacent prices
• We interpret these cycles as an artifact of our discretization

Equilibrium play

• Do algorithms learn an optimal strategy (i.e., a Nash equilibrium)?
• Again, no theoretical guarantee
• For relatively low values of and , we observe a substantial amount of

equilibrium play on path
• For example, when and ି଺ a Nash equilibrium is played 55% of the times,

with each algorithm playing an individual best response more than 60% of the times
• When the algorithms do not play Nash, they play a strategy which is pretty close

to a best response: the potential profit gain by playing a best response to the
rival's strategy is around 1%

• Off path, things are quite different
• A subgame perfect Nash equilibrium is reached in less than 2% of the sessions

• More equilibrium play is observed for even lower values of and , less when,
for instance, is large and is small

Average profit gain

Prices

Collusion?

• The key question is whether these high prices are the result of
genuine collusion, or of the algorithms' failure to learn the static Nash
equilibrium

• The policy implications would be radically different
• if the algorithms end up charging high prices because they are not smart

enough, the problem is likely to fade away as the technology improves
• If they do learn to collude, the problem will presumably worsen as the

programs become smarter

Test 1

• What do our algorithms learn when collusion cannot be an
equilibrium phenomenon?

• Two cases:
• (no memory)
• (myopic behavior)

• In both cases, we find that the average profit gain is never greater
than 10-20% and is often close to 0

Test 2

• To understand the structure of the strategies that support
cooperation, we perform the following exercise:

• At the end of a session, we let the agents play for a number of periods
according to the learnt strategies

• Then we step in and manually override one agent's choice forcing him to
choose the static best-response to the price that the opponent is playing on
path

• We then look at the reaction of the agents in the periods that follow

• In short, we derive "impulse-response" functions

Impulse response

Zooming in

Profits

5-period deviation

More firms

• In the lab, supra-competitive prices disappear as soon as there are
three or more competing firms

• We have looked at the case and
• For and , results are reported below

𝒏 = 𝟐 𝒏 = 𝟑 𝒏 = 𝟒

∆ 80% 74% 70%

Asymmetric firms

• Collusion is notoriously more difficult when firms are asymmetric
• We have considered both the case of cost and demand asymmetries
• Results are similar
• With and (which implies a market share for the

more efficient firm of 55%), for and we have

Symmetric Asymmetric

∆ 80% 78%

Robustness

• Change in
• Asymmetric and
• Change in demand level
• Change in horizontal differentiation
• Stochastic demand
• Stochastic entry and exit
• More actions (
• Longer memory ()
• Asyncrhonous learning

Open issues

• Non-stationary economic environments
• Algorithms learn in a different environment than the one where they

operate
• Deep learning
• How do algorithms manage to coordinate so well? What are they

comparative advantages over humans?

