Price-cost tests and loyalty discounts

Giacomo Calzolari and Vincenzo Denicolò

University of Bologna and CEPR

EAGCP Plenary meeting
March 6th, 2018

Antitrust tests

- Generally speaking antitrust tests are subject tot two types of errors
- Measurement errors: e.g. in predation cases it may be difficult to measure costs
- Theory errors: e.g. predation may not require prices below costs, and prices below cost may not involve predatory intent
- Hence, bothe folse positive and false negative are generally possible
- Good tests are those for which errors are limited

Contribution of the paper

- Price cost tests for loyalty discounts have been criticized mainly on the ground of measurement errors that they involve
- In this paper we focus on «Theory errors»
- We use a reasonable model of loyalty discounts where these practices may be either pro or anti competitive
- Abstracting from measurement issues, we demonstrate that price cost test generate too many false positive and false negative

Loyalty discounts

- Probably, one of the most controversial area of competition policy today
- Loyalty discounts is a broad antitrust category that includes different practices
- Some forms of volume discounts
- namely, personalized discounts and retroactive (or all-units) discounts
- Bundled discounts
- Market-share discounts
- Exclusivity discounts
- In this talk we focus on market-share and exclusivity discounts
- These are conditional pricing strategies where a firm's price depends on rivals' volumes

Policy debate

- Broadly speaking, two different schools of thought in the policy debate
- One likens loyalty discounts to predatory pricing
- profit sacrifice/recoupment logic
- The other likens loyalty discounts to exclusive dealing arrangements
- Prior to the ECJ decision on the Intel case, near per se illegality
- What approach after the Intel decision?

Intel case

- The Commission adopted a price-cost test
- The ECJ says that the court of appeal must reconsider whether the test was applied properly
- The price-cost test follows the profit sacrifice/recoupment logic
- However, that logic does not seem to fit well the Intel case where
- Contracts could be terminated at will
- The share of the market foreclosed was relatively small
- There never was a real risk that Intel's competitor might exit the market

Alternative approach

- Loyalty discounts can be profitable directly, by increasing the demand for the dominant firm's product
- Our previous work shows that this mechanism works whenever marginal prices are distorted upwards
- Calzolari \& Denicolò (AER 2013,2015); Calzolari Denicolò and Zanchettin (CEPR DP 2016)
- Marginal prices are optimally distorted when it is costly to extract the buyer's rent by means of fixed fees
- This may be so for various reasons
- Adverse selection
- Moral hazard (the buyer is risk averse)
- Competition among buyers
- Behavioural effects

Alternative approach

- The alternative approach better fits the Intel case
- The main conclusion is that loyalty discounts are anticompetitive when the dominant firm's competitive advantage is large, procompetitive when it is small
- Taking the market share as a proxy for the competitive advantage, Intel's discounts are likely to be anticompetitive
- Simple and robust Theory of harm
- Can the same conclusion be obtained by means of a price-cost test?

Model

- Two differentiated goods A and B
- Firm A produces good A and firm B good B and simultaneously compete
- A (single) buyer/retailer obtains a (gross) profit $V\left(q_{A}, q_{B}\right)$
- Competitive advantage of firm A:
- more efficient in production: marginal cost of A is $c_{A}=0$, that of $\mathrm{B} c_{B} \geq 0$
- better quality: buyer's payoff is $V\left(q_{A}, q_{B}\right)-c_{B} q_{B}$
- firm B has limited ability to serve the buyer, up to $q_{B} \leq k$
- Demand for B vanishes when $q_{B}>k$, or B is capacity constrained,

Pricing

- Firms compete in two-part tariffs

$$
P_{i}=p_{i} q_{i}+F_{i}
$$

- Fixed fees involve costs and thus marginal prices p_{i} are optimally distorted upwards
- Market share discounts: dominant firm charges two different prices
$-p_{A}^{E}$ if $\frac{q_{A}}{q_{A}+q_{B}} \geq s$
$-p_{A}^{H}$ if $\frac{q_{A}}{q_{A}+q_{B}}<s$
$-s=1$ is the limiting case of exclusivity discounts
- For the presentation we discuss the limiting cases linear pricing and exclusivity discounts

Equilbrium

- In equilibrium exclusivity discounts are always used
- The weaker firm prices at cost and the dominant undercuts the rival
- This implies that p_{A}^{E} is determined by the condition
$\max _{q_{A}}\left\{v\left(q_{A}, 0\right)-q_{A} p_{A}^{E} \quad\right\}=\max _{q_{B \leq k}}\left\{v\left(0, q_{B}\right)-q_{B} c_{B}\right\}$
- Note: r.h.s decreases as c_{B} increases and k decreases
- Hence, p_{A}^{E} increases with strong competitive advantage (decreases with weak advantage)

Effects of loyalty discounts

quality/cost advantage
$c_{B}-c_{A}$

Capacity k

- k is an inverse measure of the competitive advantage, the smaller is k the stronger is the competitive advantage

The As-Efficient-Competitor test

- The AEC test:
- Would an as-efficient-competitor be able to capture some of the dominant firm's sales without incurring in losses?
- If yes, the test is passed, if no the test is failed
- In applying the test, it may be taken into account that the AEC may divert only part of the sales (the «contestable share» of the market)
- In practice, assessing the contestable share raise a number of problems
- In our model, contestable sales are k

The As-Efficient-Competitor test

- The test is passed if

$$
q_{A}^{E} p_{A}^{E} \geq k c_{A}+\left(q_{A}^{E}-k\right) p_{A}^{H}
$$

$-q_{A}^{E}$ is the dominant firm's output with the exclusivity discount
$-p_{A}^{E}$ is the discounted price
$-p_{A}^{H}$ is the price that the dominant firm would charge if the buyer buys from rival
$-k$ is the contestable volume

- A decrease in k raises likelihood that discounts are anti competitive and the test more difficult to pass: this goes in the right direction
- But there also indirect effects, vie as k and $c_{B}-c_{A}$ affect the endogenous variables in the test: problem!

AEC test: implementation

- Equivalently, the test requires a comparison between the Contestable Share and the Required Share

$$
S_{C}=\frac{k}{q_{A}^{E}} \geq \frac{p_{A}^{H}-p_{A}^{E}}{p_{A}^{H}-c_{A}}=S_{R}
$$

- Not only the contestable share, but also the high (undiscounted price p_{A}^{H}) may also be difficult to observe
- We set p_{A}^{H} at its lower bound, assuming the dominant firm prices to minimize the risk of antitrust intervention

AEC test: Type I and type II errors

Competitive

quality/cost advantage

AEC test is uninformative

- Many type I or type II errors
- AEC test is as informative as tossing a coin
- The flaw in the test is that it looks for low prices, while loyalty discounts are anticompetitive when they lead to high prices

Global and local "as efficiency"

- AEC cannot be really as efficient in all relevant respects
- If it were, it could never be foreclosed
- The AEC logic makes sense only if one distinguishes between the ability to compete for marginal units (local as efficiency) and the ability to compete for the entire market (global as efficiency)
- This is captured by our parameter k

Global and Local "as efficiency"

- However, the same distinction may be captured even when k is so large that the constraint is never binding
- Firms A and B are locally as efficient at \bar{q}_{A}, \bar{q}_{B} if

$$
\frac{\partial v\left(\bar{q}_{A}, \bar{q}_{B}\right)}{\partial q_{A}}-c_{A}=\frac{\partial v\left(\bar{q}_{A}, \bar{q}_{B}\right)}{\partial q_{B}}-c_{B}
$$

- Firms A and B are globally as efficient if

$$
\max _{q_{A}}\left\{v\left(q_{A}, 0\right)-q_{A} c_{A}\right\}=\max _{q_{B \leq k}}\left\{v\left(0, q_{B}\right)-q_{B} c_{B}\right\}
$$

- We have re-runned the test using this local notion of as efficiency (and abstracting from the constraint $q_{B} \leq k$)

The AEC test with local "as efficiency"

Conclusion

- AEC test is at best uninformative, at worst completely misleading
- Of course, the conclusion holds when loyalty discounts are directly profitable
- Profit sacrifice/recoupment logic may apply when loyalty discounts are not directly profitable

Suggested approach

1. Did the defendant use loyalty discounts?

- Proof not necessarily obvious as contracts are often informal

2. Analysis of dominance

- Strong dominance
- presumptively illegal
- Weak dominance
- theory of recoupment is needed
- price-cost test may be informative
- yet, price-cost tests may be problematic for other reasons

3. Efficiency defenses
