Competition policy and intellectual property rights

Vincenzo Denicolò
University of Leicester, Bologna and CEPR

Competition policy and IPRs

- Tension between competition policy and IP protection
 - IPRs reward inventors by granting them market power
 - Competition policy prevents undeserved market power, or limits its exploitation
- Areas in which tension emerges
 - Compulsory licensing of patents, copyrights and trade secrets (e.g. Microsoft)
 - FRAND licensing (e.g. Qualcomm)

— ...

This talk

- Optimal level of IP protection
- Optimal form of IP protection
- Recent theories that may shed light on the intersection between competition policy and IPRs (Segal and Whinston 2007)

- Nordhaus' trade-off
 - IP protection serves to to provide incentives for the creation innovative knowledge
 - However, it does so by granting inventors market power, which is sociall costly

- What is the optimal resolution to this tradeoff?
- In a simplified model (Denicolò 2007), one obtains:

profit ratio

=

elasticity of the supply of inventions

Profit ratio

 ratio between the profits that IP holders actually get to the maximum hypothetical profits that they would get with complete protection

Elasticity of supply of inventions

 percentage increase in the number of inventions associated with a one percent increase in R&D expenditure

Elasticity of inventions

- Many empirical estimates based on the "innovation production function" approach
- Estimates range from 0.2 to 0.95
 - However, most cluster around 0.5/0.6
- Other approaches:
 - Acemoglu and Linn (2004): natural experiment in the pharmaceutical sector: elasticity between 0.8 to 0.85
 - Jones and Williams (2001): calibration of endogenous growth model: elasticity greater than 0.5
- No available estimate for copyrightable material
 - but arguably significantly smaller

Profit ratio: length

	real interest rate				
		2%	3%	5%	7%
patent life (in calendar time)	20	.33	.45	.63	.75
	18	.30	.42	.59	.72
	15	.26	.36	.53	.65
	12	.21	.30	.45	.57

Profit ratio: breadth

- Patent protection is limited not only in length, but also in "breadth"
 - Inventing around a patent
 - Follow-on innovations
 - Imperfect enforcement of IP rights
- Probably limited breadth contributes more than finite length to reducing the profit ratio

- Any assessment is inevitably highly tentative
- For patentable innovation, what evidence is available does not seem to indicate that patent holders are systematically overcompensated
- For copyrightable material, the risk of systematic over-compensation seems more concrete

Cumulative innovation

- Many authors argue that patent protection can actually impede technological progress when innovation is sequential
- However, one must distinguish between two different issues
 - The optimal division of profit between first and second-generation innovators
 - The joint optimal profit level

Cumulative innovation

- Wrong division can indeed impede innovation
- However, the joint profit level should actually be greater than in the stand-alone case
 - There is a positive externality among innovations, so in the market equilibrium there is even more under-investment than in the stand-alone case

Cumulative innovation

- In addition to wrong division of profits, however, other effects might be at work
- Bessen and Maskin (2009) argue that patents may impede the sharing of intermediate technological knowledge
 - However, their model is based on a number of strong assumptions (e.g. intermediate knowledge not licenseable; no entry by imitators etc.)

Optimal form of IP protection

- Any level of IP protection may be provided in different ways
 - Optimal combination of length and breadth (Gilbert and Shapiro, 1990)
 - Breadth itself is a multi-dimensional variable
 - optimal combination of various aspects of breadth

Kaplow's ratio test

- An intuitive, general criterion of optimality (Kaplow, 1984)
- Optimal policy should minimise the ratio between deadweight losses and profits:

$$\frac{D(x)}{\pi(x)}$$

Breadth and length

- As an example, consider the Gilbert and Shapiro problem
- Here, x is patent breadth which is taken to be the price-cost margin that the IP holder can charge
- Typically, D(x) is increasing and convex, while $\pi(x)$ is (over the relevant range) increasing and concave

Breadth and length

- Therefore, increasing breadth (i.e. x) increases the Kaplow ratio
- On the other hand, increasing length leaves the ratio unchanged
 - assuming stationarity, total discounted deadweight losses and total discounted profits increase at the same rate as length increases
- Hence, Kaplow's ratio is minimised when length is highest and breadth is lowest (given the target level of profit)

Competition and innovation

- Can competition be good for innovation?
 - If yes, then no conflict between competition policy and IP protection
- Various theories
 - Incentives to innovate are higher when firms are neck and neck
 - Technological leaders have larger market shares when competition is more intense

— ...

- Model of sequential innovation
- Standard assumption: the latest inventor instantaneously becomes the new incumbent
 - See e.g. endogenous growth theory (Aghion and Howitt 1992, Grossman and Helpman 1991) or the optimal patent design literature Green and Scotchmer 1995)
- Hence, stronger competition policy (i.e. more restraints on the incumbent's behaviour) means weaker IP protection

Segal and Whinston (2007)

- They assume that it takes some time (i.e. one period in their discrete time model) for the latest inventor to become the new incumbent
- In that period, the inventor is an entrant that competes with the previous incumbent (i.e. the penultimate innovator)

- Competition policy affects
 - The joint profit of the incumbent and the new inventor
 - The division of profit between the two firms
- Harsh competition policy reduces joint profits but facilitates entry and hence increases the new inventor's share

- Abstract from any effect on joint profits
- Then, harsher competition policy
 - favours the new inventor in the current period
 - harms the new inventor in some future period,
 when he will be the incumbent facing entry by the next inventor

- If a transversality condition holds, the former effect must prevail on the latter (front-loading effect)
- In this case, harsh competition policy is good for innovation

Conclusion

- Competition policy may serve to reduce excessive market power created by IP protection
- However, extreme caution must be exercised as inventors may actually be under-compensated
- Arguably, over-compensation (and hence the scope for harsh competition policy) is more likely for copyrightable material than for patentable innovations